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axis, these harmonics must be transformed to a space- 
fixed coordinate system before the integrations over 
the orientations of Rt and Rr [cf. equation (3)] can be 
performed. The required transformation is (Rose, 
1957) 

Dm,,,,(Ru,)rzm (A1) 
m 

where Y~m is defined in the space-fixed system and 
where D~m,(Ru,) is a Wigner matrix whose arguments 
are the polar coordinates of Ru, in the space-fixed 
frame. The transformed expression for (n(i)n(i'))T may 
now be plugged into equation (3) together with the 
Rayleigh expansion of exp ( - i Q .  Ru,), i.e. 

exp ( - i Q .  Ru,)=4n ~ (-i)~j,(QRu,) 
! 

x ~ YL(R,,) r,m(Q). 
m 

(A2) 

Integration over the angular coordinates of R, and Rr, 
required by equation (3), may now be performed direct- 
ly by making use of the rules given in Chapter 4 of 
Rose (1957). 

Integration over the angular coordinates f~ and f~, 
follows a prescription similar to that described above 
for the angular parts of the Ri and R~, integrations. 
The defining equation [cf. equation (3)] for al(Q) is 
first expanded as a Rayleigh series: 

cq(Q)=4n ~ aj ~ (-i)~t(Quj)Yt*m(Q)Y~m(D, .u j ) .  
j lm (A3) 

In order to introduce the orientational coordinates 
£~ of the molecules, the It,. are rewritten in terms of 
a set of spherical harmonics, 171re(u j), which are defined 
in the body coordinate system of a molecule. The re- 

quired transformation, which is similar to equation 
(A1), yields: 

a , (Q)=4n ~ aj ~ (-i)zj,(Quj) 
j lmm" 

X Ylm(Q)Dmm,(~'~l)Ylm,(Uj) (A4) 

where the argument of the rotation matrix is now the 
orientation f~ of the ith molecule. Integrations over 
f~ and f~, may now be carried out and the resulting 
expressing may be converted to that given by equa- 
tion (8) by making use of the sum rules for the Clebsch- 
Gordon coefficients described in Chapter 3 of Rose 
(1957). 
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Energy-Dispersive Spectroscopic Methods Applied to X-ray Diffraction in Single Crystals 
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Two single-crystal energy-dispersive crystallographic methods (the fixed-crystal method and the rotating- 
crystal method) are described and investigated. Formulae for integrated intensities are derived for 
mosaic and perfect single crystals. Experimental results and a comparison between measured and cal- 
culated integrated intensities for a perfect germanium crystal are given. Special features and possible 
applications of the methods are discussed. 

1. Introduction 

Energy-dispersive X-ray diffractometry, since it was 
introduced by Giessen & Gordon (1968) and by 

Buras, Chwaszczewska, Szarras & Szmid (1968), has 
been used almost exclusively for studies of powdered 
crystals. A few results on single-crystal diffraction have 
been published, dealing with escape peaks (Fukamachi, 



328 E N E R G Y - D I S P E R S I V E  S P E C T R O S C O P I C  M E T H O D S  

Togawa & Hosoya, 1973; Buras, Staun Olsen, Linde- 
gaard Andersen, Gerward & Selsmark, 1974) and 
polarity (Hosoya & Fukamachi, 1973). 

The present paper discusses in some detail the possi- 
bilities of energy-dispersive X-ray analysis in single- 
crystal diffractometry. Two methods, namely the fixed- 
crystal method and the rotating-crystal method, both 
proposed by Buras (1971), have been investigated. 
Formulae for the integrated intensities have been 
derived for the mosaic crystal as well as for the perfect 
single crystal. Experimental results and a comparison 
between measured and calculated integrated intensities 
for a perfect germanium crystal are given. Finally, 
special features and possible applications of the 
methods are discussed. 

2. Description of the energy-dispersive spectroscopic 
methods 

2.1. Fixed-single-crystal method 
In Fig. 1 a collimated polychromatic X-ray beam is 

scattered from a single-crystal sample, adjusted for re- 
flexion in a particular set of lattice planes.The energy 
spectrum of the X-rays scattered through a fixed angle, 
200, is measured by a semiconductor detector connected 
to a multichannel pulse-height analyser. Fig. 2 shows 
an Ewald construction in the reciprocal lattice. One 
notices that the reciprocal-lattice points corresponding 
to the recorded reflexions are situated on a straight 
line (e.g. 111,222, 333, 444 . . . .  ). As the energy limits 
the available wave-vector range to be between kmin= 
2rcEmin/hc and kmax = 2zcEmax/hc it will only be the re- 
flexions lying on the line segment of length 2(kmax- 
kmin) sin 00 that can be obtained. This is shown in more 
detail in Fig. 3. Experimental results are presented in 
§3. 

The relation between the interplanar spacing, dH, 
• and the corresponding photon energy, En, recorded by 
the multichannel pulse-height analyser is described 
by the equation (Cole, 1970) 

E~d, sin 00=6.199 (keV A) ,  (1) 

where H denotes hkl. 

2.2. Rotating-crystal method 
Imagine the sample shown in Fig. 1 to rotate around 

an axis perpendicular to the incident beam. The sample 
consists of a single crystal adjusted to have a suitable 
zone axis parallel to the axis of rotation. A particular 
set of lattice planes selects an appropriate wavelength 
from the incident continuous X-ray spectrum and pro- 
duces a diffracted beam whenever the crystal is rotated 
through the reflexion position.* It follows from the 

* We restrict ourselves to zero-layer reflexions. However, 
several layers of reflexions can be recorded simultaneously 
using a number of detectors. 

Ewatd construction that the reciprocal-lattice points 
corresponding to the zero-layer reflexions are con- 
tained within two circles of radius 2kmin sin 00 and 

Sample Sample 
table "~ / 

I ---[ 
S~ $2 / \ / _  2e0 

Multi-channel I S t ' / ~ .  
pUlnsek height I d-"~'~.~-~ Semi 

o yser I cond~-ctor 
detector 

Fig. 1. 
Fig. 1. Principle of the energy-dispersive spectroscopic methods. 

S~, $2, $3 and $4 slits defining the beam paths. 

.32e••9 1"~9 3~9 s~9 

~ o6s 218 4~s 6~s 

1~1 " ~  $ 1 1  331 551 

5~0 0 0 0  2 2 0  4~,0 6(i0 

Fig. 2. Ewald construction explaining the fixed-crystal spec- 
troscopic method for a fixed scattering angle in the case of 
a diamond lattice. The crystal surface is indicated parallel to 
the (111) planes. Zone axis [1]0]. Notice the forbidden re- 
flexions 222 and 666, indicated with open circles. 

~ -roy source 
• M.,4 

\,, / 
t 

\ "  ~333 

ox- krnin ) sine 0 "i/ 

10.0.01 . . . . . . . . . .  

Detector 
Fig. 3. Ewald construction showing that the recorded reflex- 

ions are all confined to the straight-line segment 2(kma~- 
km~) sin 0o. 
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2kmax sin 00, where 200 is the fixed scattering angle. The 
points are obtained by rotating the line segment 
2(kmax-kmin)sinOo (Fig. 3) around an axis passing 

6 Si  hhh 
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O0 777 
/ ~  888 

. J  
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1 0 1'0 20 3'0 4tO 
E ( k e V )  "--*- 

(a) 

5 0  

1.5 1 

o (J 

1.o 

z 

x 0.5 

111 

ICu~ 
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I I ] ; 

~o ~ ~ 50 
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Fig. 4. Diffraction pattern from a fixed single crystal of silicon. 
200=48 °, e silicon escape peak. (a) logarithmic scale. (b) 
linear scale. Notice the forbidden reflexion 222. 
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F i g .  5. Experimental resolution of the fixed-crystal method. 
,dE full width at half maximum. Circles: silicon diffraction 
peaks, triangles: germanium diffraction peaks. 

through (0,0,0). Experimental results are presented in 
§3. 

3. Experimental results 

The experimental arrangement shown in Fig. 1 has 
been used in the present work. Copper and tungsten 
diffraction tubes operated between 40 kV and 50 kV 
have been used as the X-ray source. A collimating 
system composed of linear slits has been used. The 
scattered X-rays have been analysed by an Ortec Series 
7000 Si(Li) detector connected to a Canberra Model 
8100 multichannel pulse-height analyser with 1024 
channels. The resolution of the detector is 180 eV 
FWHM at 5.9 keV. The recorded diffraction peaks 
have been fitted to Gaussian peaks for the evaluation 
of peak positions and integrated intensities. 

Figs. 4(a) and (b) show a hhh diffraction pattern ob- 
tained with the fixed-crystal method using logarithmic 
and linear scales respectively. The sample is a large 
perfect silicon crystal, oriented for the symmetric 
Bragg case of diffraction. The high peak-to-background 
ratio is to be noticed. The exposure time in this case is 
relatively small: using a copper tube operating at 50 
kV and 14 mA (constant potential) we could easily 
obtain in 80 s 10000 counts in the 333 peak located at 
15 keV and having a resolution of 2%. As can be 
seen from Fig. 5 the full width at half maximum [AEn[, 
increases with the increasing photon energy. However, 
the resolution defined as IAE/EHI is better in the high 
energy range, where in our case it approaches 1%. 

As can be seen from Fig. 4(a) the 222 reflexion from 
silicon is recorded along with the other reflexions. This 
reflexion is forbidden in the diamond structure. How- 
ever, tetrahedral charge distribution of the bonding 
electrons and anisotropy of the thermal vibrations re- 
sult in a small non-zero structure factor. The intensities 
of the forbidden reflexions might be strongly affected by 
multiple Bragg reflexions. The advantages of the 
energy-dispersive method for measuring forbidden 
reflexions are twofold: Firstly the crystal orientation 
is easily adjusted using the strong reflexions which 
appear simultaneously. Secondly there is much more 
freedom in choosing a proper wavelength in order to 
avoid (or study) multiple-beam diffraction. 

Fig. 6 shows some diffraction patterns obtained with 
the rotating-crystal method. A number of diffraction 
patterns of silicon and KC1 with different axes of ro- 
tation have been measured and indexed. The speed of 
rotation (of the order of 60 r. p. m.) was much higher 
than in the conventional rotating method. It ensures 
the simultaneous appearance of all peaks. If this is not 
important the crystal can be rotated with any desired 
speed. In principle, it is also possible to correlate the 
switching on and off of the analyser with the angle of 
rotation so that only parts of the pattern are recorded. 
This can be important in special cases. 

In the case of both a fixed crystal and a rotating 
crystal the scattering angle can be chosen in such a way 
as to ensure the recording of the most important re- 
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flexions with the optimum intensity and resolutions. 
When necessary two or more detectors can simultane- 
ously record reflexions at different scattering angles. 

4. Formulae for integrated intensities of  reflexions 

The integrated intensities depend, as is well known, on 
the state of perfection of the single crystal. Two ex- 
treme cases are considered in this section, namely the 
ideal mosaic crystal (negligible primary and secondary 
extinction) and the large perfect crystal. In the first case 
the kinematical theory and in the second the dynamical 
theory of diffraction are used. 

Notation 
The notation used here is in the main the same as that 

of Zachariasen (1945). 
h Planck's constant. 
c Velocity of light. 
r~ Classical electron radius. 
2 X-ray wavelength. 
i0(2) Intensity per unit wavelength range of the inci- 

dent beam. 
io(E) Intensity per unit energy range of the incident 

beam. 
So Cross section of the incident beam. 
V Effective crystal volume. 
b Ratio of the direction cosines of the incident 

and reflected beams relative to normal to sur- 
face. 
Number of unit cells per unit volume. 
Integrated intensity (=tota l  diffracted power). 
Integrated reflexion power. 
Structure factor of index H( = F'u + iF~). 
Multiplicity factor. 
Polarization factor. K =  1 for normal compo- 
nent and K =  Icos 2001 for the parallel compo- 
nent. 

/z Linear absorption coefficient. 
L, bs Absorption length ( = p -  ~). 
Lex t Extinction length [ = (2KNr~21F'nl)- ~]. 
Igl = lz/(2gNreAlF'nl) = Z~t/Labs. 

4.1. Ideal mosaic crystal 
4.1.1 Fixed-crystal 
The total diffracted power in the classical Laue method 
is given by 

p~o.r~ga=io(A)V(Nr~lF.i)22+ 1 +cos z 200 
' 4 sin 20o (2) 

N 
e~ 
Rn 
F~ 
J~ 
K 

Equation (2) is derived with the assumptions of negli- 
gible absorption and extinction and of an unpolarized 
incident beam.* It is also assumed that/0(2) is a slowly 
varying function of 2 over the small width of each peak 
so that the integration can be performed using the value 
of/0(2) at the peak position (von Laue, 1960). 

* The polarization problem is discussed in connexion with 
equation (6). 

Using 
d21 2 z hc 

i0(E)= ~ i0(2)= ~ i0(2)= L-z io(2) 

and the Bragg equation, one can rewrite equation (2) as 

pmosatc __hc(Nre)2V[io(E)d2lFl2]n(1 _~_cos 2 200) (3) H,ftxed 

The subscript H on the right-hand side of equation (3) 
means that the quantities E, d and F depend on the 
reflexion hkl. 

In structure studies only the knowledge of the 
relative values of the structure factors are important. 
Thus for practical purposes the constant factors in 
equation (3), including the scattering angle, can be 
omitted. 

4.1.2 Rotating single crystal 
In this section zero-layer reflexions for a fixed 

scattering angle are considered. The integrated power 
of a reflexion H is easily obtained by multiplying the 
corresponding expression for the fixed crystal [equa- 
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Fig. 6. Diffraction pattern from a rotating single crystal. (a) 
Silicon, axis of rotation parallel to [110]. 200 = 30 °. (b) KCI, 
axis of rotation parallel to [001]. 200 = 32 °. 
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tion (3)] with a factor [j}~tA00/(27C)] , where j ~ t  is the 
multiplicity factor of the reflexion H in the crystallo- 
graphic zone defined by the rotation axis, and AOo is 
the divergence of the X-ray beam. AOo/(2n) is the frac- 
tion of time in which a particular set of lattice planes is 
in a reflexion position. Thus the integrated power is 
given by 

m o s a i c _ _  2 • 2" "/100 PH,rot -hc(Nre) V[to(E)d J IFIZ]H (1 +cos z 200) - ~ - .  (4) 

For practical purposes the constant factors in equation 
(4) can be omitted [cf. equation (3)]. 

4.2. Large perfect single crystal 
The rotating-crystal method generally uses small 
samples and the formulae of the preceding section are 
valid. Therefore only the case of afixed single crystal is 
considered in this section. The total diffracted power in 
the Laue method is given by (Zachariasen, 1945) 

p perfect _ F D A  ¢ H,f lxed-- t l , f l ,n ,O,n(2)+ R~t, pio, p(2)]So , ( 5 )  

where RXn is the reflexion power integrated on the wave- 
length scale, and the subscripts n and p indicate that 
Re has to be evaluated separately for the normal and 
parallel components of polarization. The same assump- 
tion concerning/o(2) as in connexion with equation (2) 
is made here. Zachariasen (1945) has shown that the 
diffracted power can be calculated in terms of a param- 
eter y, and then converted to an expression in terms of 
the quantity which is chosen as the independent vari- 
able in the actual experiment. The reflexion powers 
integrated on the wavelength scale and the y scale, 
respectively, are related by 

1 K y 
R~r= -2~ Ibl-1/ZNre231rnl sin2 0o RH. (6) 

In the following a symmetric Bragg case of diffraction 
is considered, i.e. I bl= 1. Furthermore, the incident 
beam is assumed to be unpolarized,* i.e. i0,,=io, p= 
io/2 and one has 

p perfect hc mr. c, R~,, + Icos 200lR~,p 
H , f i x e d  = - - - ~  - lvt eoo[io(E)dlF'l]n 2 sin 00 

(7) 

For practical purposes the constant factors in equation 
(7) can be omitted. R~t must generally be calculated by 
numerical integration but Hirsch & Ramachandran 
(1950) have developed an empirical formula for a cen- 
trosymmetric crystal. It fits the actual values to within 
2%:  

n(1 + Id) 
R~-- 4{Igl +exp [ - (1  + •z)Z(Igl + C)]}'  (8) 

* The polarization of the Bremsstrahlung from a thick 
target is in general negligible except for energies very close to 
the high-energy limit. It affects the diffracted intensities with 
less than 4 % at the scattering angles and the peak positions 
used in this work (Alstrup, 1974). 

where lgI=lz/(2KNreAIFHI), tC=FH/F'H, and C =  
ln(32/3n) = 1-225. The parameter Igl describes the im- 
portance of extinction and absorption in determining 
the intensity of reflexion, a small value of Igl denoting 
a large extinction and vice versa. 

It is interesting to consider two limiting cases: 
(a) No absorption. In this case Igl = x = 0  and equa- 

tion (8) reduces to y _ 8 RH---S, which is the Darwin solution 
for a thick non-absorbing crystal. In this case the H- 
and 00-dependent factors are separated in equation 
(7). 

( b) Absorption is the dominating damping process. In 
this case Igl >> 1. It can be shown that equation (7) be- 
comes identical with equation (3), where the effective 
crystal volume, V, is replaced by S0/(2#). This is 
exactly the expression for a symmetric Bragg reflexion 
from a thick mosaic crystal with absorption. 

4.3. Corrections 
As in all diffraction methods a number of corrections 

have to be included when structure factors are to be 
determined from the measured intensities. 

An obvious correction is due to the spectral response 
of the detector. However, if the same detector is used 
throughout the experiments one can regard the in- 
tensity i0 in the preceding formulae as an effective in- 
tensity as seen by the detector. Problems connected 
with the effective spectral distribution measurements 
are discussed in § 5. 

Thermal vibration is taken into account by the De- 
bye-Waller factor in the usual way. Anomalous 
scattering has to be corrected for if any of the diffraction 
peaks are located at an energy very close to an absorp- 
tion edge of the sample. Otherwise this correction is 
small. 

The most crucial corrections for the imperfect crystal 
concern absorption and extinction. The absorption 
corrections are applied in the same way as in the con- 
ventional methods. However, one has to take into 
account the wavelength dependence of the absorption 
coefficient when polychromatic X-rays are used. It is a 
very fortunate fact that absorption and extinction are 
automatically taken into account by the dynamical 
diffraction theory for large perfect crystals. Thus the 
formulae of § 4.2 need no corrections in this case. 

5. Spectral distribution of the incident beam 

As can be seen from the formulae in § 4 it is necessary 
to know the spectral intensity distribution, io(E), if the 
energy-dispersive methods are used for structure anal- 
ysis. 

An obvious way to obtain io(E) is to perform 
(a) a direct measurement with the detector situated 

in the primary beam. 
It is also possible to measure the diffracted intensities 
from a sample with a known structure. This will give 
the value of io(E) at some discrete points. 
Two different methods are here possible: 
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(b) a complete diffraction pattern at a particular 
scattering angle can be measured; 

(c) one can use a particular diffraction peak and 
measure its intensity at various scattering angles. 

It has been found in this work that the direct meas- 
urements are strongly influenced by forward scattering 
from the slit system and great care should be taken to 
minimize this effect. In addition it is advisable to test 
these measurements with either one or both of the two 
diffraction methods giving values of io(E) at some dis- 
crete points. In Fig. 7 the direct measured spectrum, 
combined with method (b) is shown. In the direct 
measured spectrum we notice the Pb Lcc and Lfl lines 
coming from the slit system. Also we notice the In Kcc 
and Kfl which result from X-ray fluorescense in the 
material used to form an electrical contact on the sur- 
face of the detector (Heath, 1972). The good fit indicates 
the correctness of the derived formulae. 

Method (b) has an advantage compared with (c), 
namely that all angle-dependent factors in the intensity 
formulae are constant. The drawbacks of method (b) 
are that the structure factors and the correction factors 
for the different reflexions have to be known accurately. 

6. Comparison between measured and calculated 
integrated intensities 

In order to test further our formulae we have under- 
taken a comparison between measured and calculated 
integrated intensities of the reflexions from a large 
perfect germanium crystal. The diffraction patterns 
were recorded with the fixed-crystal method. The 
intensity distribution of the incident beam, io(E), 
was calculated from the integrated intensities of the 
corresponding silicon reflexions and taking into 
account the direct measurement (Fig. 7). The expected 
intensities of the germanium reflexions were then cal- 
culated and compared with the observed values. 
Formulae for the integrated intensities are given in § 
4.2. The parameter [gl is energy dependent and we have 
found it convenient to express it in terms of absorption 
and extinction lengths defined in the following way:* 

Labs _____ ~ -  1 ; 

Lex t = (2NgreAlF~[) -~; (9) 

[gl=Lext/Zabs . 

Lext and Labs have been calculated and plotted as a 
function of the photon energy (Fig. 8). The actual 
values of Igl for the different reflexions can be obtained 
from the diagram. Values of the structure factors have 
been taken from the calculations by Dawson (1967), 
values of the absorption coefficients from the measure- 
ments by Persson & Efimov (1970) and by Hildebrandt, 
Stephenson & Wagenfeld (1973). 

* It should be noted that extinction lengths can be defined 
in many ways, differing by some small numerical factor. For 
example, the Pendell6sung period in the symmetric Laue case 
is Lext in equation (9) multiplied by 2re cos 0. 

One notices from Fig. 8 that Lex t < Lab s for all orders 
of reflexions from silicon in the energy range used in 
this work. The value of R~ has been found to be nearly 
constant as predicted by the Darwin formula for a 
perfect nonabsorbing crystal. Lab s of germanium is 
reduced drastically for energies above the K absorption 
edge (11.10 keV) so that the intensities of the higher- 
order reflexions tend to those from a mosaic absorbing 
crystal. 

The calculated and observed intensities of the ger- 
manium hhh reflexions are shown in Table 1. The agree- 
ment is very good, giving an R value less than 3 %. 
This shows that the energy-dispersive methods can be 
used for the determination of structure factors. 

Table 1. Observed and calculated intensities of the 
hhh reflexions from a perfect germanium crystal 

200 = 47"7 ° 

H E PH (obs.) PH (calc.) IzIPHI 
hhh (keV) (arb. units) (arb. units) (arb. units) 
333 14"06 40"40 39"70 0.70 
444 18-80 44.43 45-29 0.86 
555 23.48 12.44 12.78 0.34 
777 32.86 1-64 1.44 0.20 
888 37.54 0.93 0-68 0.25 
999 42.18 0.16 0.11 0-05 

100.00 100.00 2-40 

7. Discussion 

The methods described above are new and not fully 
developed and thus they do not pretend to be as precise 
as the well established methods utilizing monochroma- 
tic radiation. The energy-dispersive methods have also 
some features which limits the precision of measure- 
ments: the final energy resolution of the detector sys- 
tem, the necessity of measuring the spectral distribu- 
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Fig. 7. Spectral distribution of the incident beam. No correc- 
tion for the detector efficiency has been applied. Copper 
tube, 50 kV, constant potential. Circles are points calculated 
from Si hhh reflexions using the dynamical theory of diffrac- 
tion. Full line is measured directly with the detector in the 
beam. 
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tion of the incident beam and the wavelength(energy)- 
dependent absorption.* (The second and third features 
matter only when integrated intensities are to be meas- 

* As mentioned previously we are also making an assump- 
tion that/o(2) is a slowly varying function of 2 over the small 
width of each peak. 
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Fig. 8. Extinction and absorption length as function of photon 
energy. The polarization factor is set to K= 1. (a) Silicon; 
(b) germanium. 

ured). However, the energy-dispersive methods have 
also some special features which might make them 
useful in certain specific crystallographic studies. The 
most important future application seems to be in the 
studies of structure changes (including the kinetics of 
phase transitions and chemical processes). Here the 
simultaneous appearance of all reflexions, the short 
exposure time and the fixed geometry of the experi- 
mental set up is of the greatest importance. This is 
especially true when cryostats, ovens or high pressure 
devices are used and/or the observed phenomena are 
time dependent. 

The experimental features discussed in § 3 make the 
fixed-crystal method an interesting alternative when 
forbidden reflexions are to be measured. The results 
can be used for the study of anharmonic effects in 
solids. The methods, especially that of the fixed single- 
crystal one, could be used for crystal-defect studies, 
oxidation, and other reactions in thin surface layers. 
Owing to the different absorption coefficient of X-ray 
photons associated with different reflexions, different 
depths of the surface layer can be investigated. It 
should also be mentioned that an element analysis by 
means of fluorescence radiation is always simultaneous- 
ly performed. 
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